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HYPULSE Combustor Analysis

I. Introduction

A quasi-one dimensional, finite rate mixing and chemistry analysis was performed on

selected data obtained under the HYPULSE combustor test program. The test

program was conducted 1 in the 1 x 2 x 28 inch GASL rectangular combustor model to

1. examine the relative performance of three candidate scramjet fuel injector

configurations at hypervelocity energy levels (Mach 13.5 and 17), and

. to acquire data for the purpose of CFD validation so that the actual flight

performance of the X-30 may be extrapolated.

However, the short test times and small flow areas typical of impulse facilities such as

HYPULSE, combined with the low test pressures, introduce hydrogen-air chemical kinetics

effects which are significantly exaggerated from that expected in flight. The net result is that

the measured combustion pressure rise and heat flux in the model are reduced to levels

which make injector performance comparisons and extrapolation to flight conditions

difficult. Hence, the principal objective of this analysis was to determine the influence of

firdte rate combustion chemistry on the combustor flowfield at the nominal HYPULSE

facility test conditions. In addition, the parametric calculations described below were

performed to indicate the sensitivity of various flowfield quantities on the predicted

combustion pressure rise.

The fuel injectors and test conditions chosen for this study were selected based on the

availability of SPARK 2 FNS and PNS solutions. The SPARK solutions were "one-

dimensionalized" by the method described in Reference 3 for compatibility and comparison

with the present solutions. Hence, the 15 degree flush wall injector (FWI) was examined

at Mach 17 total enthalpy for stoichiometric nonreacting (mixing), reacting-air, and reacting-

oxygen test flows. As in the tests, the fuel mass flow for the oxygen solutions corresponds

to that of stoichiometric H2-air (4_o2 = 0.2314). The 10 degree swept ramp injector (SRI) was

examined at the Mach 13.5 condition for stoichiometric mixing and reacting-air test flows.

Note that the latter combination of injector and flight condition has not yet been tested in

HYPULSE. The issues addressed in the parametric study were conducted for the FWI at

Mach 17 total enthalpy with stoichiometric hydrogen-air. They are as follows:

lw The effect on the combustion pressure rise of increasing the combustor inlet pressure

by factors of 2 and 4 was determined. The nominal inlet pressure at the Mach 17

condition is 15,800 N/m 2 (2.29 psia).
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. The effect of decreasing the combustor inlet temperature by 25 and 50 percent (at

constant total enthalpy) was determined. The nominal inlet temperature at the Mach

17 condition is 2100 K (3780 R).

° The effect of varying the mixing schedule was determined to examine the effect of

uncertainties in the mixing distribution on the flowfield.

o The effect of increasing the fuel total temperature on ignition and reaction times was

assessed. The total temperature was increased from room temperature to 1000 K

(1800 R).

The code used to perform the analysis, 3Stream 4, is a space marching streamline

chemistry program consisting of three parallel quasi-one-dimensional streamtubes of fuel,

oxidizer, and mixing stream. Constant static pressure is assumed across the three streams

at each marching step. The code was formulated to model the essential physics of

hydrogen-air combustion in a scramjet engine, namely chemical nonequilibrium, thermal and

mass diffusion, heat transfer through the combustor walls and wall shear or skin friction

drag. (Since the code was written to drive the "LSENS" or GCKP875 general chemical

kinetics code, it should be equally applicable in principle to any combination of fuel and

oxidizer). Heat transfer and skin friction drag can be applied to any one or all of the

streams arbitrarily. Several modifications and corrections, as well as time-costly calibrations

were necessary to gain enough confidence in the solutions to proceed with the analysis. The

changes made to the code are documented in the Appendix.
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II. Initial Conditions and Modeling Techniques

The results reported herein were preceded by calibration solutions of some shear layer

experiments 6 performed in HYPULSE in which the numerical tolerances and modeling

techniques were refined. Although these solutions will not be discussed here, the results

presented in this report reflect these refinements.

1. Initial Conditions

The initial conditions for the 3Stream solutions consist of post-injection properties for

the three streams (primary, fuel, and mixing) equilibrated at the same pressure, but each

having its own temperature, velocity (or Mach number), and composition. Pre-injection
conditions for solutions at the nominal test conditions were obtained from the one-

dimensionalized SPARK results. The axial station nearest the injector which showed no

evidence of fuel injection (as determined by the abrupt change in the gas constant) was

chosen. Note that there was a small recirculation region behind the flush wall injector

which permitted some fuel to travel upstream. In addition, the fuel injection location in the

SPARK solution was 7.27 inches rather than 7.70. This required the primary flow conditions

to be taken at an axial location of 6.69 inches. Pre-injection conditions for the parametric

solutions were calculated using a cycle code with skin friction and heat transfer modeled by

a Van Driest fiat plate transformation and Reynold's analogy, respectively.

The post-injectionproperties were calculated from the primary stream conditions and the

fuel conditions with a gaseous jet penetration code based on the work in Reference 7. In

this model, the post-injection properties of parallel fuel and air streams are equilibrated at

the same pressure. However, the model is valid only for underexpanded or matched

pressure jets. Since in all the tests studied here the jet pressure was less than the effective

back pressure (defined as two-thirds of the primary flow pitot pressure), the fuel was simply

isentropically expanded and pressure-equilibrated.

A mixing stream was computed by first mixing the primary and fuel streams in

stoichiometric proportion with a mass equal to one percent of the total mass in the

combustor. This mass percent produces an area equal to about one percent of the total

area. Although the initial quantity of mixing stream is rather arbitrary, it was found during

the code calibration that initial areas up to 5% had a negligible effect on the solution. The

properties of the three pressure-equilibrated streams were then obtained by conserving mass,

momentum, energy, and total combustor area.

The initial composition of the primary stream was taken to be the equilibrium

composition behind the primary shock in the expansion tube. Hence, the gas is assumed to

be chemically frozen through the unsteady expansion wave to the test section. This

introduces larger concentrations of atomic oxygen into the primary and mixing streams than

3

URiGINAL PAGE r_



TR-352

would exist for a test gas in equilibrium at the test conditions. Note that a small amount

of OH was added to the mixing stream to simulate the small recirculation region near the
injector.

The chemical kinetic mechanism used for the reacting solutions was the full 30 reaction
NASP mechanism s. A nitrogen dissociation reaction was added to the mechanism because

of the high temperatures expected in the combustor. The mixing solutions were obtained

by using nitrogen as the primary stream and including the nitrogen and hydrogen

dissociation reactions in the mixing stream.

2. Mixing Schedules

The mixing distributions used were those calculated by SPARK. Therefore, the mixing

efficiency in 3Stream was redefined according to that in SPARK, which is the mass ratio of

the fuel mixed to the total quantity of fuel for a fuel lean or stoichiometric mixture. For

a fuel rich mixture, it is the ratio of the fuel mixed to the quantity of fuel required to

consume all the available oxygen (see the Appendix). Figures 1 and 2 compare the SPARK-

computed and 3Stream-input distributions for the flush wall and swept ramp injectors,

respectively (the mixing and reacting schedules for the SRI were almost identical). In

Figure 2, the abscissa is relative to the injector location. The origin of the spikes in the

FWI SPARK solutions is unknown, but were not included in the 3Stream mixing schedule.

The mixing schedule for the parametric solutions was identical to the SPARK-computed

distribution for the FWI reacting-air solution. This was done to isolate the effect of the

parameters varied.

3. Heat Flux and Skin Friction Drag Modeling

Heat flux to the wall and friction drag were modeled in several ways depending on the
measured heat flux data and the results of the SPARK solutions. The data for the FWI at

an equivalence ratio of one indicates no significant difference between the heat flux

measured on the lower and upper walls, except for reacting-oxygen tests 358 and 360. In

these tests, the injector wall dearly displays lower heat transfer rates, implying that some

film cooling took place. The higher heat flux data along the lower wall suggests that the

heat release reached this wall toward the end of the combustor or that air hugging the wall
was compressively heated by combustion near the center of the duct. The SPARK-

computed cross-plane contours of water and OH indicate that mixed fuel and oxidizer reach

a significant fraction of the wetted perimeter at about 24 inches from the inlet. The heat

flux and skin friction drag were initially transitioned from the air stream to the mixing

stream at this point. However, this introduced non-physical forces on the stream because

of its small mass, which was only 17% of the total mass at the "transition" point. (The

mixing equivalence ratio is unity, so that for the oxygen test gas, the stoichiometric fuel-to-

air ratio is 0.126, rather than 0.0291 for air. This makes the oxygen flow rate into the
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mixing layer four times less than, say, the flow rate of air.) Hence, the heat transfer and

skin friction were applied only to the air stream.

The same cross-plane contours for the SRI reacting-air solution at Mach 13.5 indicate
that mixed fuel and air reach the walls at about 16 inches from the inlet. The heat flux and

skin friction were transitioned to the mixing region at this point because the mass of the

mixing stream was over 70% of the total mass. The mixing efficiency at this "transition"
location is about 50% for this case.

The heat flux data for the other tests at the nominal conditions were averaged and

applied to the air stream around the wetted perimeter of the combustor. Consideration of

the proper wetted perimeter over which to apply the skin friction and heat transfer are

discussed in the Appendix.

The skin friction coefficient used for the air and mixing streams in all the solutions was

0.0025. This value was found to result in good agreement with the calibration data

mentioned above while still being a physically reasonable value for the tests examined here.

(The Van Driest skin friction calculation indicates that at Mach 17 test conditions, the

average skin friction coefficient is between 0.0025 and 0.003.) Neither skin friction nor heat

transfer were applied to the hydrogen stream as they resulted in a non-physical acceleration
of the stream.

Finally, the heat flux for the parametric solutions was calculated by the internal Nusselt

number correlation for turbulent flow in a smooth pipe (Nu x = 0.023Rex°SPr°4). The

correlation gives fairly good agreement with the measured heat flux at the conditions tested.

Hence, it was assumed to be adequate for these computations.

4. Modeling of Other Flow Losses

The modeling of losses other than skin friction and heat transfer, e.g. ramp shocks, fuel

injection bow shocks, turbulence dissipation, etc., was accomplished for the SRI at Mach

13.5 by decreasing the combustor area ratio to match the l-D, SPARK-computed exit

pressure for a mixing solution. This was not necessary, however, for the flush wall injector

because of the relatively small losses associated with low angle flush wall injection.



TR-352

III. Results

The solutions for the flush wall injector at the nominal Mach 17 test condition are

described here first, followed by the parametric calculations. Finally, the solutions for the

swept ramp injector at the Mach 13.5 test condition are discussed.

1. Flush Wall Injector; Mixing and Reacting-Air Simulations

Consider first the solutions for the mixing test. The 3Stream- and SPARK-computed

axial pressure distributions are compared in Figure 3 with the test data from mixing test 365.

Both solutions predict the data fairly well, although SPARK clearly over-predicts the

pressure rise to a greater extent than 3Stream ((PJPi)data=2.2, (PJPi)cFD=2.6,

(P¢/Pi)3St_m=2.35). This is probably due to the fact that PNS (and FNS) solutions typically

underpredict the wall heat transfer rate because of insufficient grid resolution. 9 At this test

condition, the amount of heat lost to the walls of the combustor model is about 5% of the

total enthalpy per Btu/(in2-sec) of measured heat flux. The integrated measured heat flux

in the mixing and reacting-air tests is about 1.5 Btu/(in2-sec). Hence, 7.5% of the total

enthalpy of the air stream is lost during the test. This quantity of heat loss is responsible

for the nonlinear pressure gradient calculated by 3Stream in Figure 3. Note that the post-
injection pressures and pressure gradients calculated by the two codes (at a combustor

station of 7 inches) match each other, indicating that the one-dimensionalized SPARK

pressure is consistent with the 3Stream-calculated value. In addition, both calculations

match the pressure data at the injection location, indicating that it is reasonable to obtain

initial conditions for this injector by isentropically expanding the fuel jet to a pressure-

equilibrated state. In other words, losses induced by the fuel injector bow shock are small.

When the mixing pressure distributions are compared with those for reacting-air in

Figure 4, both the data and the 3Stream solution exhibit smaller pressure rises than the

mixing test ((Pc/Pi)_ta= 1.9, (Pc/Pi)3Strm=2.1), but the SPARK solution significantly over-

predicts the data with an exit pressure ratio of 2.85. Since the measured heat flux is about

the same and the mixing rate for the combustion test is higher (38% at the exit versus 31%

for mixing), the smaller combustion pressure rise indicates a net absorption of energy into

the flowfield by endothermic reactions. This can be verified by examining the difference

between the 3Stream-calculated mixing and reacting temperature profiles shown in Figures

5 and 6. The temperature distributions labelled "energy-averaged" and shown by the dashed

lines are averaged over the air, fuel, and mixing streams. The averaged temperature rise

for the reacting solution (Figure 6) is 300 *K less than that of the mixing simulation in

Figure 5 principally because of endothermic reactions in the air stream. In the reacting

solution, combustion produces a net exothermic exchange of heat, albeit a negligibly small

exchange, as will be seen in combustion efficiency distributions. However, nitric oxide

reactions in the air stream produce a net endothermic exchange of heat in the combustor,

6
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and in fact cause the air temperature to decrease toward the end of the duct. Without

reaction in the air stream, the temperature rise is significantly higher as indicated by the

nitrogen stream temperature profile in Figure 5 (note the different temperature scales in

Figures 5 and 6).

When the equilibrium concentration of NO in air is plotted as a function of pressure and

temperature (Figure 7), it is seen that a maximum concentration of about 4%-5% by volume

occurs at 3000 K at pressures typical of those in the HYPULSE combustor. Hence, as the

air temperature rises to these levels, NO formation is enhanced. But since the reactions are

typically slow, formation of oxides of nitrogen lags behind the temperature rise in the air

stream. If the initial temperature were reduced by, say, 500 degrees K, Figure 7 shows that

the equilibrium concentration would be about half of the maximum. However, the amount

of energy absorbed by the formation of oxides of nitrogen seems significant here only

because the energy released by combustion is relatively small.

In contrast, the SPARK mixing and reacting temperatures, also shown in Figures 5 and

6, indicate that the combustion temperature rise is slightly higher than the temperature rise

for the mixing solution. A comparison of the computed hydroxyl mass fraction distributions

in Figure 8 indicates generally good agreement between the two mechanisms in the

combustion zone. But since the SPARK mechanism does not contain an oxygen dissociation

reaction nor the following reactions which produce nitric oxide and NO2, the endothermic
air stream reactions are not simulated:

O+Nz-->NO+ N

O2+N-->NO+O

NO + 0 2 --> NO 2 + O

NO z + M--> O + NO + M

Hence, the net heat release is positive in that simulation, producing higher pressure and

temperature rises than 3Stream. Note that only the relative temperature rise between the

SPARK and 3Stream solutions can be compared here, as the 3Stream temperature is an

energy-averaged value and the SPARK temperature is calculated by integrating mass,

momentum, and energy over the three-dimensional flowfield and equating them to an

equivalent one-dimensional flow.

The above conclusion was verified with a 3Stream solution in which the SPARK

mechanism was substituted for the NASP mechanism and the heat flux was reduced by a

factor of five in accordance with the SPARK results of Reference 9. The calculated

pressure distribution shown in Figure 9 compares well with the SPARK-computed profile,

and the exit pressures are reasonably close (6 psia versus 6.4 psia). Note that the pressure

gradients of both solutions are almost identical until the SPARK pressure gradient suddenly
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increasesat a combustor station of 20 inches. The causeof the sudden increase is not
known, but the otherwise good agreementbetween the two solutions indicates that the
nitrogen reactions in the air stream are in fact primarily responsible for the observed
difference between the solutions, and that the lower measuredcombustion pressurerise
seemsto be a direct consequenceof the energyabsorbedby these reactions.

The calculatedair stream,mixing stream,andaveragetemperaturesat the combustorexit
for the latter solution are 4050 K, 3300 K, and 3200 K, respectively. The air stream
temperature is higher than the nitrogen stream temperature in the mixing solution, which
is consistentwith the reducedwall heat flux. Similarly, the average and mixing stream
temperaturesare significantly higher than thosefor the nominal reacting-air case,reflecting
the reduced heat flux and the sole effect of heat release from combustion.

The relevantspeciesmole fractions in the reaction zoneare shownrelative to the mixing
stream in Figure 10. Sinceboth the initial and mixing equivalenceratios are stoichiometric,
and the mixing rate is constant, the reactant molar profiles should have zero slope if no
reaction occurs. If a combustion product displaysa zero slope, however, then there is a
positive net formation rate of that species. Figure 10 showsthat significant formation of
water aswell ascombustionintermediate speciesoccursalmost immediately after injection.
Note that the initial decrease in atomic oxygen is an equilibration from the super-
equilibrium concentration of oxygenbehind the primary shock in the intermediate tube of
HYPULSE. Toward the end of the combustor,water continues to form (as there is still a
positive mixing rate), but at a significantly reduced rate. More importantly, however, the
combustion intermediates O and H do not exhibit the characteristically sharp inflections
typical of combustionat higher pressuresand lower temperatures,and in factatomic oxygen
and hydrogen are continuing to form at the exit (the concentrations of all specieswith
respect to the total mass in the combustor are actually increasing becauseof continued
mixing). A large portion of the energyfrom hydrogen-air combustion is releasedwhen the
free radicals recombine becauseof the large heatsof formation associatedwith thesethree
body reactions. Since the three body recombination reactions are slower than the
bimolecular reactionsdue to the inversetemperaturedependenceof the reactionrates1°,the
small combustion pressure rise can be attributed to a large extent to the lack of
recombination of atomic hydrogen and oxygen.

To the right of Figure 10 are the species concentrations which would exist if the reacting

stream were in equilibrium at the combustor exit temperature and pressure. As expected,

super-equilibrium quantities of all the intermediate species are present, indicating that the

chemistry is far from equilibrium. Since the rate of the three body reactions (i.e., the

reaction time) is proportional to the cube of the pressure, the extent of nonequilibrium

results partly from the low static pressure in the combustor. However, the temperature is

high enough to substantially reduce the rate of recombination of free radicals (by increasing

their equilibrium concentrations), making the reaction time to an equilibrium state heavily

dependent on the temperature as well.
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A more dramatic illustration of the extent of chemical nonequilibrium is shown by the

combustion efficiency distributions in Figure 11. In this graph, the following definitions of

combustion efficiency are plotted along with the mixing schedule:

. The combustion efficiency based on water production, defined as the number of
moles of water formed over the amount which would be formed if all of the least

available reactant in the mixing stream reacted to form water. Multiplication by the

mixing efficiency gives the amount of water formed over the total amount of reactant
in the combustor.

. The combustion efficiency labelled "hf, eq", defined as the ratio of the local heat of

formation of the mixing stream, or stream 3, minus the combustor inflow value to the

heat of formation of the mixing stream composition in equilibrium at the local

conditions minus the inflow value, or

• ° - m,.( h /),]_ [ m(A____hhI)T . " A °
rl¢_,q [ ni(A h°L,,r)r, e th,(Ah°/)_ 31

.

This efficiency indicates the extent of nonequilibrium of the mixing stream.

The combustion efficiency labelled "hf, ideal", defined as the ratio of the local heat
of formation minus the inflow value to the ideal heat of formation which would occur

for complete combustion to water (with no dissociation) minus the inflow value, or

_cja_a/ - //i AHO/,298 liti(Ah°[)i JS

Multiplication of this efficiency by the mixing efficiency gives the amount of heat

released relative to the maximum heat release possible if the flow were fully mixed

and burned with no dissociation.

Note that the combustion efficiencies plotted in Figure 11 are not scaled by the mixing

efficiency. Therefore, the combustion efficiency distribution based on water production is

similar to the water mole fraction profile in Figure 10. Although 46% of the maximum

amount of water forms for the amount of hydrogen mixed, the ideal combustion efficiency

indicates that only 5% of the associated heat is released. However, even if the flow were

fully mixed and reacted, this combustion efficiency would be only 20%. The remaining 80%

is tied up in dissociation due mostly to the high exit temperature (this will subsequently be
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shownby cycle calculations). Hence, at these temperatures, the ideal combustion efficiency

is more sensitive to the local temperature than the pressure. The equilibrium efficiency

distribution shown in Figure 11 is similarly low (7%) because the low pressure increases the

reaction time to equilibrium and the high temperature increases the level of dissociation of

the mixture. Higher pressures can be simulated by replacing the nitrogen in the air stream

with oxygen to increase the partial pressure of the oxidizer. The reacting-oxygen tests are

discussed next to determine the effect of increasing the effective pressure by about a factor

of four. However, it will be seen that the temperature increases with pressure such that the

net heat release is not significant given the level of increase in oxygen partial pressure.

10
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2. Flush Wall Injector; Reacting-Oxygen Simulation

The 3Stream simulation of the reacting-oxygen test at q_air = 1, or q_o2 = 0.2314, is shown

in Figures 12 through 14. Figure 12 compares the pressure distributions calculated by
3Stream and SPARK with the data from Run 359. The 3Stream simulation shows excellent

agreement with the data. The SPARK solution again over-predicts the data, but not to the

degree observed for the reacting-air case because of the absence of nitrogen reactions in the

primary stream. Note that the intersection of the fuel jet bow shock with the lower surface,

which causes locally high measured pressures at a combustor station of 12 inches, does not

seem to affect the overall level of pressure rise as indicated by the agreement between the

simulation and the data. What is of greater interest, however, is that the oxygen tests result

in only a 30 percent increase in pressure rise (P_/Pi =2.5) over the reacting-air test, and only

14% over the mixing test. The equilibrium combustion efficiency profile in Figure 13 shows

an increase in the rate of reaction over air due to the higher oxygen partial pressure.

However, chemical kinetics effects still dominate in the reaction zone, as the exit

equilibrium efficiency is only 30%, and 55% of the available hydrogen in the mixing layer

is shown to be in the form of water. Note that the mixing rate is almost twice that for the

reacting-air case, so that from the water efficiency distribution in Figure 13 it is seen that

the rate of formation of water is at least twice as large (actually by over a factor of four in

terms of moles/m3/sec). However, the temperature rise is such (Tc¢=3000 K) that the

formation rate of atomic hydrogen is similarly greater. Since the heat of formation of water

is only about 10% greater than that of atomic hydrogen (-57.8 versus 52.1 kcai/mole), the

net heat release is not significantly greater than for H2-air. Hence, reaction to equilibrium

is similarly delayed.

In contrast to the relatively small difference in pressure rise between reacting-air and

reacting-oxygen, the measured wall heat flux is 50% higher for the oxygen case at the

combustor exit. Since the wall temperature is close to room temperature for the test

duration, the higher wall heat flux may indicate that the mixture recombines at the wall,

releasing additional heat and increasing the wall temperature gradient in the boundary layer.

Thus, the wall heat flux seems to be a better (more sensitive) indicator of the heat release,

or potential heat release, than static pressure.

The species mole profiles shown in Figure 14 indicate that the composition at the

combustor exit is far from equilibrium when compared with the equilibrium concentrations

to the right of the figure. Note that the species profiles are somewhat deceptive because

the concentrations of the species shown are actually increasing with respect to the total mass

in the combustor.

It seems clear that at these temperatures, increasing the partial pressure of the oxidizer

(or equivalently, the combustor inlet pressure) will not result in substantial combustion

pressure rise in a constant area combustor. If inlet temperature were lower, or the

combustor were diverged (or the equivalence ratio increased) such that the temperature

remains "low," then assuming equal mixing rates, a considerable improvement in the

11
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combustion efficiency is likely. This obviously impacts the performance of the actual engine

as well as the model since the facility static temperature equals the actual combustor inlet

temperature for a 1000 psf flight path (and some nominal inlet process). The parametric

calculations described next illustrate the effect of reducing the combustor inlet temperature

versus increasing the pressure.

12
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3. Effect of Combustor Inlet Pressure and Temperature Scaling

The results of the finite rate solutions wherein the combustor inlet pressure and

temperature were varied are shown in Figures 15 through 18. Figure 15 shows the

computed pressure rise at the combustor exit versus initial pressure and temperature for the

finite rate solutions and for fully mixed, chemical equilibrium (cycle) calculations. The

initial pressure was increased by factors of two and four (4.6 psia and 9.2 psia) over the

nominal pressure of 2.3 psia, and the temperature was reduced at constant total enthalpy

by 25% and 50% (1575 K and 1050 K) from the nominal value of 2100 K. Figure 15

indicates that for both finite rate and cycle calculations, decreasing the static temperature

produces the desired effect of larger pressure rise, whereas almost no benefit is obtained

from increasing the pressure. This result can be explained by examining the temperature

profiles and considering the relative production rates of water and combustion
intermediates.

The mixing region temperature profiles for the present finite rate solutions are compared

in Figure 16 with the result at the actual test conditions. Several significant effects are

noticeable here. The temperature rise due to mixing and combustion is comparable when

the inlet pressure is doubled and when the inlet temperature is 75% of the nominal value.

However, the relative level of pressure rise in Figure 15 indicates that at higher initial

pressures, more of the combustion energy release is directed into thermal energy rather than

into flow work against pressure forces. This is because at higher temperatures (> 3000 K),

dissociation of the mixture (especially the free radicals O, H, and OH) is not completely

offset by the higher static pressures despite the fact that reaction to chemical equilibrium

occurs more quickly, as evidenced by the difference in exit temperature gradients. Figure

17 indicates that the equilibrium concentration of water is more heavily dependent on

temperature than pressure at temperatures over about 2800 K. However, the finite rate

calculation indicates that while the amount of water formed is only slightly higher at lower

inlet temperatures, the production of free radicals is significantly reduced when the inlet

temperature is lower. That is, dissociation of the reactants in the mixing region is reduced.

As a result, the energy release rate is almost three times higher when the inlet temperature

is 1050 K (and Pci=2.3 psia) than when the inlet pressure is 9.2 psia (and Tci=2100 K)

despite the increased ignition delay time seen in Figure 16.

The next figure (Figure 18) shows the equilibrium and ideal combustion efficiencies

defined previously versus the same combustor inlet scaling parameters. The combustion

efficiency values at the nominal test conditions have been shown to be low because the

amount of energy released is small compared to the ideal energy release which would be

obtained by forming all water. This ideal quantity is in fact not small compared with the

total enthalpy of the air stream, as has been suggested previously 1. The ideal energy release

of hydrogen per kilogram of air is approximately 3.5 MJ/kg(air), which is 25% of the 14

MJ/kg enthalpy contained in air at Mach 17. If the ideal combustion efficiency (at nominal

test conditions) is scaled by the mixing efficiency, then this value is reduced from about 0.05

to 0.02. Hence, only 2% of the theoretical heat of reaction is being released in the

13
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experiment (Further, this is only 0.5% of the air stream total enthalpy). For fully mixed and

chemically equilibrated constant area combustion, only 20% of the available energy is

liberated at the nominal HYPULSE test conditions as shown by the dashed line in Figure

18. As stated previously, the remaining 80% is tied up in dissociation. At lower

temperatures, the cycle calculations predict much higher ideal combustion efficiencies than

at higher pressures principally because the mixture is less dissociated (Finite rate chemistry

reduces the efficiencies as shown.). Even for initial temperatures approaching the

autoignition limit, the ideal efficiency predicted by the cycle calculation is only 43%. This

illustrates the tremendous potential for additional heat release at higher pressures and lower

temperatures and the necessity for such conditions to permit evaluation of injector

performance and for proper flight scaling. On the other hand, the chemical kinetic

efficiency of the actual exhaust nozzle becomes critical if the significant chemical energy

contained in the combustor exit flow is to be harnessed for thrust production.

The effects of varying the mixing rate and the fuel total temperature are briefly discussed
next.

14
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4. Effect of Mixing Rate and Fuel Total Temperature

The SPARK-computed mixing rate for the FWI reacting-air solution was increased to

permit a fully mixed flow at the combustor exit. The compute pressure rise is P_/Pci = 2.35,

which is only about 10% higher than that of the "nominal" solution (=2.10). The mixing

efficiency and the computed combustion efficiencies in Figure 19 indicate no significant

chemical kinetic effect due to the higher mixing rate. Hence, the mixing itself seems to be

the sole reason for the higher pressure, and is expected because of the extreme chemical

kinetic limitations which exist. The implications for testing at these conditions, however, are

significant since the principal objective of the combustor tests here is to determine injector

(mixing) performance in a hypervelocity environment.

Finally, the fuel total temperature was raised from room temperature to 1000 K to

determine the effect on ignition and reaction. The primary effect of heated hydrogen is to

reduce ignition delay under conditions where autoignition is marginal, and to enhance the

axial momentum of the primary stream at the higher flight Mach numbers. However, the

high static temperatures encountered here preclude significant ignition delay effects. Hence,

no significant effects were expected, especially since the mass of fuel is small compared to

the total mass flow. In addition, it has been determined that higher combustion efficiencies

would be obtained by reducing the average static temperature in the combustor. As

expected, the resulting flowfield is almost identical to that for room temperature hydrogen.
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5. 10 Degree Swept Ramp Injector Simulation at Mach 13.5

A solution was generated for the swept ramp injector at Mach 13.5 test conditions to

compare with the SPARK solution and predict the pressure rise and combustion efficiency

at this lower total enthalpy condition. The results are presented in Figures 20 through 22.

Figure 20 compares the SPARK and 3Stream pressure profiles for the mixing and reacting

solutions. Fair agreement between the solutions is observed given the scale of the ordinate.

The 3Stream solution predicts a slightly larger combustion pressure rise than SPARK mainly
because the skin friction and heat transfer were transitioned from the air stream to the

reacting stream at a combustor station of 15 inches (Note the change in pressure gradient).

Nevertheless, the combustion pressure rise calculated here is not significantly different from

that of the solutions at Mach 17. Recalling that the combustor inlet static pressure is about

the same at both conditions, and the inlet static temperature at the Mach 13.5 condition is

2350 K, it seems likely that the net heat release will be comparable to that at Mach 17 even

though the flow total enthalpy is 30% lower. Figure 21 reveals that the combustion

efficiencies for this solution are only slightly below those for the Mach 17 reacting-oxygen

solution. The noticeable upturn in the equilibrium efficiency towards the combustor exit

reflects the larger pressure gradient discussed above. However, the ideal efficiency remains

low because of the corresponding increase in temperature. Figure 22 shows that the

3Stream-computed average temperature climbs to 2900 K.

The results presented here indicate that even at Mach 13.5 total enthalpy, the pressure

rise due to combustion will be small compared with the overall pressure rise. Given the

geometry of the injectors, it is likely that this pressure increment will be obscured in the

shock wave structure originating at the injector ramps. However, further work is required

to more closely inspect and better interpret the results obtained.
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IV. Conclusions

One-dimensional, finite-rate mixing and chemistry solutions were obtained for selected

tests of the GASL combustor in the HYPULSE facility to determine the influence of

nonequilibrium combustion chemistry on the combustor flowfield, and to indicate the

sensitivity of the chemistry to inlet pressure and temperature. The mixing, reacting-air, and

reacting-oxygen solutions for the 15 degree flush wall injector at Mach 17 total enthalpy

agree well with the measured wall pressure data. The simulations predict minimal heat

release from combustion at the nominal HYPULSE Mach 17 test conditions because the

high static temperature significantly reduces the recombination of and energy release from

combustion intermediates, and because the low static pressure increases the reaction time

to chemical equilibrium. In addition, because the temperature is high and heat release is

relatively small, endothermic nitrogen reactions tend to further obscure the combustion heat

release. The SPARK PNS and FNS solutions compare less well with the hydrogen-air data

because of the absence of nitrogen reactions in the SPARK kinetic mechanism and because

of the low calculated wall heat flux. However, replacing the nitrogen in the air stream with

oxygen to simulate a higher oxidizer partial pressure does not significantly increase the

combustion efficiency because the static temperature increases with pressure such that the

net gain in energy release is small. Similarly, the solutions for the swept ramp injector at

Mach 13.5 conditions predict comparable pressure rises and combustion efficiencies because

although the total enthalpy is 30% lower, the static inlet temperature is higher (2350 K).

Parametric calculations were performed in which the combustor inlet pressure was increased

and the temperature decreased to indicate relative sensitivity of the computed pressure rise

and combustion efficiency to such variations. The pressure rise and combustion efficiency

were shown to be much more sensitive to the inlet temperature than the pressure principally
because at temperatures typical of those calculated in the combustor, the extent of

dissociation of the mixture is more heavily dependent on the temperature than the pressure.

Based on an ideal combustion efficiency in which the reference efficiency is the heat of

formation of the undissociated products of combustion, the internal energy of dissociation

is significantly larger than the heat release from water formation even for fully mixed and

chemically equilibrated flow. This has significant implications for the tests and the actual

flight vehicle since the HYPULSE facility static temperature is equal to the combustor

entrance value in flight. However, at Mach 17 total enthalpy, the ideal energy release is

fully 25% of the air stream total enthalpy, implying that sufficient energy for thrust

production is available at this flight Mach number if the conditions at the combustor exit

or the chemical kinetic efficiency of the exhaust nozzle permit recovery of the energy tied

up in dissociation.
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Appendix

Modifications to 3Stream

The modifications made to 3Stream are summarized below. The error tolerances given here

were determined empirically and produce the most consistent results for the solutions

obtained in this study.

1. 2-D Wetted Perimeter

A wetted perimeter calculation for square or rectangular cross sections was added to the

skin friction drag and heat flux subroutines "skinf" and "hetran." Previously, only the

perimeter of a circular cross section was available. Also, a flag was added to specify

whether the wetted perimeter is that of the input geometry or that of each individual stream

(only for 2-D cross section). This was done for flexibility in the wetted area over which the

heat transfer and skin friction were applied. For instance, if it is known that one stream

hugs the walls over a significant length of the combustor, then the heat flux and skin friction

should be applied over the wetted area of the combustor rather than the wetted area of that

stream.

It is assumed that mixing stream 3 is sandwiched between the primary stream (stream 1) and

the fuel stream (stream 2). Hence, if a 2-D geometry is specified, the wetted perimeter for
streams 1 and 2 is

WPl,2 = 2Al,2/w + w

and for stream 3, the wetted perimeter is

wp3 = 2(A3/w + W)

where A is the area of each stream and w is the effective width of the duct.

2. Heat Transfer

Heat transfer input was changed from hc(T) to q(x), where hc is the heat transfer
2

coefficient, T is temperature, q is heat flux in Btu/in/sec, and x is axial distance in inches.

Local values are obtained by linear interpolation. The derivatives of the input heat flux with

respect to temperature and density are defined as follows:

dq/dT = (dq/dx)/(dT/dx)

dq/drho = (dq/dx)/(drho/dx)

where dq/dx is the slope used to interpolate the local heat flux (in subroutine "linq") and
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dT/dx and drho/dx are obtained from subroutine "diffun," which calculates the local values

of the governing ODE's.

Subroutine hetran was also modified to allow the input heat flux to be used as a multiplier

for the internally calculated heat flux when the internal calculation is specified. This was

done so that the heat flux for each stream can be applied or removed (or scaled) arbitrarily

as a function of axial location. Previously, if the internal calculation was specified for a

particular stream(s), the heat flux was applied throughout the entire geometric domain.

NOTE: Do not use the option which permits heat transfer between streams. Total

enthalpy in the duct is not conserved when this option is specified.

3. Skin Friction

The partial derivative of the drag term Df with respect to temperature was erroneously set

equal to zero in subroutine "skinf'. It was corrected to read

dDf/dT = -DJT

where Df = (c,)(p/(RT))(v2)(wp/A)/2

4. Mixing

The equivalence ratio was incorrectly defined in the Langley Mixing Recipe (in subroutine

mixl) as both the total equivalence ratio in the combustor and the mixing equivalence ratio

(which defines the mass flow rate of the major constituent into the mixing stream). An

input mixing equivalence ratio "phimix" was defined. Phimix should equal unity for the

Langley Recipe.

The input mixing efficiency (in subroutine mix3) was redefined as follows:

etam = (mdot H2) 3 / (mdot H2) r for phi less than or equal to one

etam = (mdot H2) 3 / ((mdot air)T(strat)) for phi greater than one

Where "strat" is the input SToichiometric RATio of fuel to oxidizer. Hence, the mixing

efficiency is the ratio of fuel mass that can react (to the extent that it has been mixed in

stream 3) to the total mass of fuel for a fuel lean or stoichiometric mixture, or to the fuel

mass required to consume all the available oxygen for a fuel rich mixture.
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5. Double Precision

Double precision does not seem to be used consistently in the code. This may explain some

of the anomalous trends seen in the changes in solutions with error tolerances. Care was

taken in maintaining double precision when new variables were introduced. However, no

attempt was made to track all the double-precisioned variables, as this would take several

lifetimes to complete.

6. Error Tolerances

A significant amount of time was invested to determine the combination of error tolerances

which maintained reasonable run times and, when tightened, resulted in physically plausible

results and small changes in the solutions. This includes cases where the chemical kinetic

mechanism was varied slightly with minimal expected change in the solution, e.g., removing

the H202 and HNO reactions in the H2-air mechanism. The pressure iteration in subroutine

"stream," and the method for converging on the area and the post-mixed properties in

subroutine "mxiter" are extremely poor. This of course forces tight tolerances to be used

which increases the number of required steps and hence the run time for a typical solution

(the number of required steps is also heavily dependent on the number of reactions and the

rates of mixing and reaction). In retrospect, it would have probably been less time

consuming to rewrite these subroutines than to play with the tolerances. Nevertheless, the

definition of each tolerance and the value used are listed below for reacting and

"nonreacting" (H2-N2) solutions:

Artol: Error tolerance for area convergence in subroutine areachk.
inconsistent.

Reacting: 1.0 x 10 -6 cm z

Nonreacting: 1.0 x 10 s cm 2

By far the most

erri: Relative error tolerance for converging on temperature, density, and velocity during

integration.

Reacting: 1.0 x 10-5

Nonreacting: 1.0 x 10-6

ptoli: Error tolerance in subroutine mxiter used to converge on the post-mixing properties
of each stream.

Reacting: 1.0 x 10-5

Nonreacting: 1.0 x 10 -6

emax: Relative error per integration step in the driver routine for the core integrator.

Reacting: 1.0 x 10 .5

Nonreacting: 1.0 x 10 4

atolsp: Absolute error tolerance for species; should equal 1 x 10 -9 times emax.
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7. Number of Steps Per Solution

As mentioned previously, the number of steps and hence the total time necessary to
complete a solution generally depends on the error tolerances, the number of reactions in

the chemical kinetic mechanism, the rate of reaction, and the rate of change of the local

conditions. The number of steps taken to complete a mixing run varied from 9000 for the

SRI to 27,000 for the FWI. Reacting solutions required between 50,000 and 90,000 steps,
except for the FWI reacting-oxygen solution which required only 3000 steps because of the

reduced mechanism. The large number of steps required for the mixing solutions may
indicate a heavy dependence on the tolerances erri and ptoli which were tighter than for the
reacting solutions.
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